Micrometer and Nanometer Spatial Resolution with µPIV

Steve Wereley
Associate Professor of Mechanical Engineering
Birck Nanotechnology Center
Purdue University (USA)
wereley@purdue.edu
<table>
<thead>
<tr>
<th>Rank</th>
<th>Title</th>
<th>Author(s)</th>
<th>Source</th>
<th>Cited References</th>
<th>Times Cited</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>PIV measurements of a microchannel flow</td>
<td>Meinhart CD, Wereley ST, Santiago JG</td>
<td>EXPERIMENTS IN FLUIDS 27 (5): 414-419 OCT 1999</td>
<td>10</td>
<td>257</td>
</tr>
<tr>
<td>6</td>
<td>EFFECT OF RESOLUTION ON THE SPEED AND ACCURACY OF PARTICLE IMAGE VELOCIMETRY INTERROGATION</td>
<td>PRASAD AK, ADRIAN RJ, LANDRETH CC, OFFUTT PW</td>
<td>EXPERIMENTS IN FLUIDS 13 (2-3): 105-116 JUN 1992</td>
<td>9</td>
<td>160</td>
</tr>
<tr>
<td>7</td>
<td>Low cost, high resolution DPIV for measurement of turbulent fluid flow</td>
<td>Fincham AM, Spedding GR</td>
<td>EXPERIMENTS IN FLUIDS 23 (6): 449-462 DEC 1997</td>
<td>31</td>
<td>143</td>
</tr>
<tr>
<td>9</td>
<td>STEREOSCOPIC PARTICLE IMAGE VELOCIMETRY APPLIED TO LIQUID FLOWS</td>
<td>PRASAD AK, ADRIAN RJ</td>
<td>EXPERIMENTS IN FLUIDS 15 (1): 49-60 JUN 1993</td>
<td>15</td>
<td>137</td>
</tr>
<tr>
<td>10</td>
<td>Iterative multigrid approach in PIV image processing with discrete window offset</td>
<td>SCARANO F, RIETHMULLER ML</td>
<td>EXPERIMENTS IN FLUIDS 26 (6): 512-523 1999</td>
<td>22</td>
<td>135</td>
</tr>
</tbody>
</table>

Figure 1 from Wereley and Meinhart, *Annual Reviews of Fluid Mechanics*, 2010 (Web of Science data as of November 2008).

Purdue Microfluidics Laboratory 25 Years of PIV, DLR Göttingen, 2009
Micro Particle Image Velocimetry (µPIV)

Santiago, Wereley, Meinhart, Beebe, Adrian, Exp. Fluids, 1998
US Patents 6,653,651 and 7,057,198--Licensed to TSI, Inc.

Micro-Fluidics Lab Purdue University

Nd:YAG Laser

Flood Illumination

Flow in

Flow out

Glass cover

Focal Plane

Epi-fluorescent Prism / Filter Cube

CCD Camera (1280x1024 pixels)

Micro-PIV image pair
Differences between μPIV and conventional PIV

- Brownian motion of nm-scale tracers
 \[\varepsilon_B = \frac{\langle s^2 \rangle^{1/2}}{\Delta x} = \frac{1}{u} \sqrt{\frac{2D}{\Delta t}} \]
 where
 \[D = \frac{\kappa T}{3\pi \mu d_p} \]

- Typically minimal optical access
 Volume illumination and wavelength filtering
 low particle concentrations

- Miniscule signal reflected from tracer particles
 Rayleigh scattering range ($d_p \leq \lambda$)
 A 100 nm particle scatters 10^6 times more light than a
 10 nm particle
Where we started...

Santiago, Wereley, Meinhart, Beebee, and Adrian, “A particle image velocimetry system for microfluidics,” Exp. Fluids, 1998

Fig. 2a,b. Vector fields of a surface-tension driven Hele–Shaw flow around a 30 μm wide obstacle. Each field contains approximately 900 velocity vectors covering a 120 μm × 120 μm field of view. Each velocity vector was measured with a 6.9 μm × 6.9 μm × 1.5 μm measurement volume. a Instantaneous vector field measurement. b Eight-image ensemble-averaged PIV velocity vector field.
Correlation Analysis for μPIV (steady flow)

\[R_{AB}(s) = \int A(X)B(X+s)dX \]

Three techniques involve the same operations
- 1. Acquire image fields
 - \textit{ensemble average}
- 2. Correlate image fields
 - \textit{ensemble average}
- 3. Determining velocity vector from peak in correlation
 - \textit{ensemble average}

Operations (2) and (3) are nonlinear and don’t commute.
Correlation of Ensemble-Averaged Image Fields

Image Sequence	Image A \((t = t_0)\)	Image B \((t = t_0 + \Delta t)\)	Correlation \(R_{AB}\)	Peak Search
1 | \(A_1\) | \(B_1\) | | |
2 | \(A_2\) | \(B_2\) | | |
3 | \(A_3\) | \(B_3\) | | |
\(\cdots\) | \(\cdots\) | \(\cdots\) | \(\cdots\) | \(\cdots\)
\(N\) | \(A_N\) | \(B_N\) | | |
(Ensemble Ave.) | \(< A >\) | \(< B >\) | \(R_{<A> }\) |

Purdue Microfluidics Laboratory 25 Years of PIV, DLR Göttingen, 2009
Ensemble-Averaged Velocity Fields

<table>
<thead>
<tr>
<th>Image Sequence</th>
<th>Image A $(t = t_0)$</th>
<th>Image B $(t = t_0 + \Delta t)$</th>
<th>Correlation R_{AB}</th>
<th>Peak Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A_1</td>
<td>B_1</td>
<td>$R_{A_1B_1}$</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A_2</td>
<td>B_2</td>
<td>$R_{A_2B_2}$</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A_3</td>
<td>B_3</td>
<td>$R_{A_3B_3}$</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>N</td>
<td>A_N</td>
<td>B_N</td>
<td>$R_{A_NB_N}$</td>
<td></td>
</tr>
</tbody>
</table>

(Ensemble Ave.)
Ensemble-Averaged Correlation Function

Image Sequence

1

2

3

N

Image A
(t = t₀)

A₁

A₂

A₃

A_N

Image B
(t = t₀ + Δt)

B₁

B₂

B₃

B_N

Correlation
R_{AB}

R_{A₁B₁}

R_{A₂B₂}

R_{A₃B₃}

R_{A_NB_N}

< R_{A,B} >

(Ensemble Ave.)

Peak Search
Ensemble-Averaged Particle-Image Correlation Functions
Performance of 3 correlation methods
Meinhart, et al., JFE, 2000

Fig. 4 Comparison of the performance of the three averaging techniques: average velocity ●, average image □, and average correlation ▼

• Valid measurement is one which differs by less than 10% from the long-time averaged and smoothed vector field
Assessing Accuracy of µPIV

Measure a Known Flow

Top View

Side View

V(y,z)

300 µm

Measurement Area

30 µm

V(y,z)
Microchannel Flow (x-z plane)
wall-normal spatial resolution < 1um

Streamwise Position (µm)

Spanwise Position (µm)

0 5 10 15 20 25 30

0 40 50 60 70

10 mm/s

Purdue Microfluidics Laboratory 25 Years of PIV, DLR Göttingen, 2009
Streamwise Profile (x-z plane)

2% FS error
Tracer Particle Diffusion

- Based on Brownian motion of tracers broadening correlation peak
- Einstein (1905) developed formula for diffusion coefficient

\[\langle s^2 \rangle = 2D\Delta t \quad \text{where} \quad D = \frac{kT}{3\pi\mu d_p} \quad \Rightarrow \quad \langle s^2 \rangle = \frac{2\Delta tk}{3\pi d_p} \cdot \frac{T}{\mu(T)} \]
Calculate the particle image size d_e in the object plane:

For light sheet PIV:

$$d_e = \sqrt{M^2 d_p^2 + d_s^2}$$

where M is magnification, d_p is particle diameter, and d_s is spot size of imaging system.

For volume illumination (micro-PIV):

$$d_e = \sqrt{M^2 d_p^2 + d_s^2 + d_z^2}$$

$$d_z = \frac{zMD_a}{x_0 + z}$$
Relating Temperature to Peak Area Change
Olsen and Adrian, 2000

\[\Delta s_0 = \frac{\sqrt{2}}{\beta} \sqrt{d_e^2 + 8M^2 \beta^2 D \Delta t} \]

where \(\beta^2 = 3.67 \) is fit parameter for matching Gaussian to Airy function

\[\Delta A = \frac{\pi}{4} \left(\Delta s_{0,c}^2 - \Delta s_{0,a}^2 \right) = 2\pi M^2 \beta^2 D \Delta t \]

where \(\Delta s_{0,a} \) autocorrelation peak diameter (\(\Delta t=0 \))

and \(\Delta s_{0,c} \) is the cross-correlation peak diameter

\[\frac{T}{\mu(T)} = \frac{3d_p}{2M^2 k \Delta t} = C_0 \frac{\Delta A}{\Delta t} \]
Temperature Measurement Results

\[
\frac{T}{\mu(T)} = \Delta A \frac{3d_p}{2M^2k\Delta t} = C_0 \frac{\Delta A}{\Delta t}
\]

- Measure correlation peak areas at e^{-1} level
- Use calibration to get constant of proportionality
- Original result within ±3°C over significant temp range (20-50 C)
- Recent results approx ±1.5°C over larger range (20-80 C)

Hohreiter, Chung, Olsen, Wereley, MST 2002
Chamarthy, Garimella, Wereley, Exp. Fluids 2009

Purdue Microfluidics Laboratory

25 Years of PIV, DLR Göttingen, 2009
Assess hydrodynamic size of particle
Kumar, Gorti, Shang, Lee, Yip, and Wereley, *J. Fluids Eng.*, 2008

- Use as biodetector for any number of substances
- Linear for small number of analytes per particle
- Sensitivity of about 1 virus per particle

\[\zeta = 0.2705n + 5.8632 \]
\[R^2 = 0.983 \]

700 nm particle with 10 M13 viruses attached
Single Pixel Evaluation (SPE)
Westerweel, Geelhoed, Lindken, 2004

- With modern cameras and computers we can increase the sample number almost without bound...
- We can decrease the correlation region size to its smallest possible value: one pixel

\[
\Phi_{spe}(i, j; m, n) = \sum_{k=1}^{k_{tot}} f_k(i, j) \cdot g_k(i + m, j + n)
\]
Some Results (Westerweel, et al.)

- Infinitely thin shear layer (simulated)
- Flow in a nearly rectangular channel (experimental)
- Spatial resolution reported smaller than d_p

Fig. 7. The result for the profile of the displacement for an infinitely thin shear layer (32x32 px spatial correlation; single-pixel ensemble correlation)

Fig. 11. The mean velocity profile in the micro-channel obtained by means of 128x8-pixel ensemble correlation and single-pixel ensemble correlation
Experimental Parameters

Optics
- $M = 20x$, $NA = 0.4$, $\lambda \sim 0.5 \mu m$

Particle size
- $d_p = 0.5 \mu m$

Pixel size
- $d_{pix} \sim 300 \text{ nm}$

Diffraction spot size
- $d_{diff} \sim 1.3 \mu m$

Beating the Diffraction Limit

Wereley and Meinhart, 2005

Working well below the diffraction limit!

Ultimate limit, $M=100x$, pixel size $\sim 60 \text{ nm}$

<table>
<thead>
<tr>
<th>Particle Size</th>
<th>$M = 60$</th>
<th>$M = 40$</th>
<th>$M = 40$</th>
<th>$M = 20$</th>
<th>$M = 10$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.30 μm</td>
<td>0.42</td>
<td>0.69</td>
<td>0.98</td>
<td>1.28</td>
<td>2.93</td>
</tr>
<tr>
<td>0.50 μm</td>
<td>0.58</td>
<td>0.79</td>
<td>1.06</td>
<td>1.34</td>
<td>2.95</td>
</tr>
<tr>
<td>0.70 μm</td>
<td>0.76</td>
<td>0.93</td>
<td>1.17</td>
<td>1.43</td>
<td>2.99</td>
</tr>
<tr>
<td>1.00 μm</td>
<td>1.04</td>
<td>1.18</td>
<td>1.37</td>
<td>1.59</td>
<td>3.08</td>
</tr>
<tr>
<td>3.00 μm</td>
<td>3.01</td>
<td>3.06</td>
<td>3.14</td>
<td>3.25</td>
<td>4.18</td>
</tr>
</tbody>
</table>
What have I left out?

• Nearly everything—short talk…
• In recent years we’ve seen developed:
 – 3D systems
 • 3 hole mask
 • Diffraction pattern
 • Stereo
 • Astigmatism-based
 – Time-resolved systems
 – Evanescent wave PIV
 – Confocal PIV
• Important work on theory of μPIV:
 – Depth of correlation
 – Particle visibility
• And I’m still leaving a ton out…