PIV Cameras and time resolved PIV measurement

B. Lecordier et M. Trinite

CORIA
UMR CNRS 6614
Université & INSA de Rouen (France)
Mail : Bertrand.Lecordier@coria.fr
Web: http://www.coria.fr
Outlines

Introduction

Interline transfer CCD in the 1990’s for PIV
- Frame straddling technique
- Transition toward cross-correlation approach
- Actual CCD cameras

Time Resolved PIV measurement for high speed flows (> 1000 Hz)
- High speed photographic camera for PIV in 90’s
- First high speed CMOS video camera for PIV
- Actual high speed CMOS cameras

Conclusions et perspectives
Introduction 1/3 - End of the 80’s: Video Camera for PIV measurement

- At the end of 80’s more or less all the PIV systems were based double exposed images

- Recording support
 - Photographic film
 - High resolution full frame CCD

- Use of video for
 - Digitized the film or one step of the treatment
 - Direct recording of double exposed image

Support: photographic film

Support: Full frame CCD camera

From: http://25-years-piv.dlr.de/
Introduction 2/3 - End of the 80's: Video Camera for PIV measurement

Auto-correlation
- Directional ambiguity (Image shift)
- Lower seeding density than CC
- Small dynamic range than CC
- The recording media permitted to investigate high speed flow

Cross-correlation
- The mains advantages of CC technique were well established, but the flow velocity range was limited by the video frame rate: (water flow...)

Support: Full frame CCD camera

Frame
n-2 n-1 n n+1

Laser

\(\Delta t = \frac{1}{F} > 10 \text{ ms to } 1 \text{ s} \)
Common pixel storage for odd and even fields

Rapid transfer of odd or even fields into the pixel storage

Frame rate

Field rate

Elec. Shutter

Positioning of the two laser pulses on the transition between odd and even field

| Frame rate | | | | | | | | | | | | | | | | | | | |
|------------|
| Odd |
| Odd |
| Even |
| Odd |
| Odd |
| Odd |
| Odd |
| Even |

<table>
<thead>
<tr>
<th>Laser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Odd field

Even field

Wenert *et al.* (1991)
Lecordier *et al.* (1994) EiF
Huang, H.T. & Fieldler H.E. (1994) EiF
Interline transfer CCD: frame Straddling synchronisation 2/2

<table>
<thead>
<tr>
<th>Frame rate</th>
<th>Field rate</th>
<th>Laser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Even</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Odd</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Even</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Odd</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Even</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Odd</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Even</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Odd</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Even</td>
<td></td>
</tr>
</tbody>
</table>

Format : 2 * 768.256 pixel image size

Odd field (t)

Even field (t+Δt)

Complete the two fields to avoid one pixel shift between images

Minimum Δt fixed by the transfer of field into the storage area (< 10 μs)
First acquisition with frame-straddling at CORIA laboratory: Pulsed jet

- **Camera**: XC 77CE-SONY (similar: Pulnix, JAI...)
 - Square pixels, 11×11 µm
 - Resolution: 756×581 (CCIR)
 - Minimum inter-frame delay 10 µs
 - Restart Reset function
- **Frame gabber connected to a PC**
- **Copper vapour laser (only two pulses)**

Unsteady injection

- **Combustion chamber**
- **Solenoid valves**
- **Pressurized tank**
First acquisition with frame-straddling at CORIA laboratory: Pulsed jet

- Camera: XC77CE-SONY (similar: Pulnix, JAI...)
 - Square pixels, 11×11 µm
 - Resolution: 756×581 (CCIR)
 - Minimum inter-frame delay 10 µs
 - Restart Reset function
- Frame grabber connected to a PC
- Copper vapour laser (only two pulses)

Synchronisation on the injection
First acquisition with frame-straddling at CORIA laboratory: Pulsed jet

- Camera: XC77CE-SONY (similar: Pulnix, JAI,...)
- Frame grabber connected to a PC
- Copper vapour laser (only two pulses)

Odd field: 768x256 pixels (t)

Even field: 768x256 pixels (t+\Delta t)

Original images: Lecordier, 1994 - CORIA
First acquisition with frame-straddling at CORIA laboratory: Pulsed jet

- Camera: XC77CE-SONY (similar: Pulnix, JAI...)
- Frame grabber connected to a PC
- Copper vapour laser (only two pulses)

Velocity field
EUROPIV 1: Comparison of stereoscopic PIV (translation conf.) to holography

Collaboration: CORIA and ISL (H. Royer) in a swirling flow (EUROPIV 1 Project)
Growing popularity of CC PIV method in the 90’s with low resolution interline CCD

- Simplest way to resolve the directional ambiguity
- Range of particle density larger than auto-correlation
- Large range of velocity, including zero displacement
- Easier to develop advanced PIV algorithms

Other aspects which contributed to the transition towards CC method

- Sub-pixel accuracy to compensate low resolution of images (768x256 pixels)

- Increasing of computer power for image processing
- Development of full digital PIV system for recording and processing
And Today ? CCD Camera for PIV : Full-Frame Interline Transfer CCD

- **Introduce in the first half of the 1990's**
- **Derivate of the interline transfer CCD**
- **Each pixel has its own storage site**
 - Fast transfer of the entire exposed images (< 1 μs)

CCD structure of Full frame interline transfer

And Today ? CCD Camera for PIV : Full-Frame Interline Transfer CCD

- Introduced in the first half of the 1990’s
- Derivative of the interline transfer CCD
- Each pixel has its own storage site
 - Fast transfer of the entire exposed images
- Inter-frame delay < 1 μs
- Reset/restart capability
- Resolution 1k.1k up to 4k.4k
- Pixel size 5~10 μm
- Microlenses to improve fill factor

- Time resolved measurement confined only for slow flow due to low frame rate (1 à 100 Hz).
- Integration of the signal in the second image
Time Resolved PIV in the 1990’s for high speed flow

- High speed photographic camera for PIV in 90’s
- First high speed CMOS video camera for PIV
- Actual high speed CMOS cameras
High speed photographic PIV: Principle HS photographic camera

- Maximum linear speed of the film: 0.135 mm/ms, namely 135 m/s (~10 000 rpm)
- Drum size: 80 cm to 100 cm
- Minimal recording duration: 6 ms
- Image size on film: 20x25 mm² - 40 to 150 images at each run
High speed photographic PIV: Acquisition cycle with a drum camera

- Load the film on the drum (1 min)
- Start the rotation and wait stabilization of drum speed (≈ 30 s)
- Acquisition (1 drum rotation) (6 to 100 ms)
- Chemical process of the film (1/2 h)
- Film digitalization for treatment (1/2 h to 1 h)
High speed photographic PIV: Film digitalization with high resolution scanner

Film digitalization:
- 8 bits in 2000 dpi
- 2000x1500 pixels²/image

2000x3000 pixels in 24x36 mm film format
High speed photographic PIV: Unsteady laminar and turbulent combustion

- Pressure: 1 à 5 bars
- Seeding: olive oil
- Duration of recording: ≈ 6 ms
- Variable turbulence level
- Central mixture ignition

Acquisition devices
- Cording camera (80 cm)
 - Photographic film: Kodak N&B - TMAX 400
- Copper vapor laser (Oxford)
 - Power: 45 W, soit: 5 to 10 mJ/pulse
 - Repetitive rate: 2 à 20 kH
High speed photographic PIV: Unsteady laminar and turbulent combustion

CORIA, 1993
High speed photographic PIV: Example of flame propagation

5000 fr/s - Laminar case

6800 images/s: turbulent case

Ignition

5.8 ms
High speed photographic PIV: Time evolution of the flame contour

Exemple de flamme sphérique: propane-air, $\Delta t = 0,2 \, ms$, $T_0 = 298 \, K$ et $P = 1 \, bar$
High speed photographic PIV: Computation of PIV velocity field

- **Laminar flame (5000 images/s)**
 - Use two successive images for PIV measurement using cross-correlation

- **Turbulent flame**
High speed photographic PIV: Film positioning difficulties for CC (1/2)
High speed photographic PIV: Film positioning difficulties for CC (1/2)

1. **Fixed pattern of particle in the corner of each image for positioning**

2. **Avoid film deformation during digitalization step**

Figure 1: Diagram showing the positioning of the film and the avoidance of deformation during digitalization.

Figure 2: Graphs showing RMS and Mean flow with and without glass plates.
High speed photographic PIV: Error introduced by film positioning

Measurement in a flow at rest (compared to the acquisition rate: 5000 Hz)

Error: 0.05 to 0.1 pixel

RMS

Mean Flow

Pixel

Moyenne et fluctuation (pixel)

Time (ms)
High speed photographic PIV: Laminar flame - 5000 fr/s - 2000x1500 pixels

propane/air : $\phi = 1.0$
High speed photographic PIV: Laminar flame - 5000 fr/s - 2000x1500 pixels
High speed photographic PIV: Turbulent flame - 6800 fr/s - 2000x1500 pixels

(propane/air : $\phi=1.0$, $u'/S_l=1.5$)
High speed photographic PIV: Turbulent flame - 6800 fr/s - 2000x1500 pixels

(propane/air : $\phi=1.0$, $u'/Sl=1.5$)
High speed photographic PIV: Turbulent flame - 6800 fr/s - 2000x1500 pixels

(propane/air : $\phi=1.0$, $u'/Sl=1.5$)
High speed photographic PIV: Turbulent flame - 6800 fr/s - 2000x1500 pixels

(propane/air : $\phi=1.0$, $u'/S_l=1.5$)
High speed photographic PIV: Time evolution of flame contour

![Flame contour diagrams with velocity and temperature fields]
High speed photographic PIV: Avantages et drawbacks

- High repetitive rate
- High resolution of image (> 2000x1500 pixels at 6000 fr/s)
- No statistic
- Fixed film length → limited duration of recording
High speed photographic PIV: Increasing of recording duration

Camera opening → N drum rotations → 1 or more drum rotation

Laser

Drum Rotation

1 or more drum rotation

Recording duration ≈ 100 ms

First time resolved PIV with high speed CMOS video camera

KODAK EKTAPRO HS Motion Analyzer, Model 4540
High speed CMOS camera: KODAK EKTAPRO HS - Model 4540

- Resolution: 256x256 at 4500 fr/s
- Frame rate: Records up to 4,500 full frames per second or up to 40,500 partial frames per second
- Pixel size: 22 μm
- No frame straddling synchronisation

<table>
<thead>
<tr>
<th>Recording rate [s⁻¹]</th>
<th>Number of frames in memory</th>
<th>Recording time [s]</th>
<th>Time between subsequent images [ms]</th>
<th>Image size in pixels (X × Y)</th>
<th>File size [bytes]</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 - 4500</td>
<td>3072</td>
<td>0.6824</td>
<td>0.222</td>
<td>256 × 256</td>
<td>65696</td>
</tr>
<tr>
<td>9000</td>
<td>6144</td>
<td>0.6826</td>
<td>0.111</td>
<td>256 × 128</td>
<td>32928</td>
</tr>
<tr>
<td>13500</td>
<td>12288</td>
<td>0.9101</td>
<td>0.074</td>
<td>128 × 128</td>
<td>16544</td>
</tr>
<tr>
<td>18000</td>
<td>12288</td>
<td>0.6826</td>
<td>0.056</td>
<td>256 × 64</td>
<td>16544</td>
</tr>
<tr>
<td>27000</td>
<td>24576</td>
<td>0.9102</td>
<td>0.037</td>
<td>128 × 64</td>
<td>8352</td>
</tr>
<tr>
<td>40500</td>
<td>49152</td>
<td>1.2136</td>
<td>0.025</td>
<td>64 × 64</td>
<td>4256</td>
</tr>
</tbody>
</table>

Table 1. Properties of images and tiff-files as a function of recording rate.

Image size in pixels as a function of recording rate.
High speed CMOS camera: KODAK EKTAPRO HS - Model 4540

≈ ms

Video

Exposure

Laser

No frame straddling synchronisation

$$\Delta t = \frac{1}{f_{\text{laser}}}$$
High speed CMOS camera: KODAK EKTAPRO HS - Model 4540

Lifted turbulent flame

- Camera: KODAK EKTAPRO HS - Model 4540
- Laser: Copper vapour Laser at 9kHz
- Seeding particle: Olive oil

Demarre (93) CORIA
High speed CMOS camera: KODAK EKTAPRO HS - Model 4540

9000 fr/s resolution: 256x128 pixel

Demarre (93) CORIA
High speed CMOS camera: KODAK EKTAPRO HS - Model 4540

9000 fr/s
256x128 pixels

Demarre (93) CORIA
High speed CMOS camera: “New” generation

- Resolution: larger than 2k.2k
- Acquisition rate: 1 to 6kHz at full size
- Depth: 8 to 12 bits
- Pixel size 10 to 20 μm
- Frame straddling feature (Δt < 5 μs)
High speed CMOS camera: New generation - frame straddling

Frame rate

Exposure

< 5 µs

Laser

≈ ms
Conclusions

- **Low repetitive rate camera**
 - High resolution (up to 4k.4k)
 - \(\Delta t < 300 \text{ ns} \)
 - High sensitivity
 - 8 to 12 bits images
 - Frame rate 1 to 100 Hz
 - Integration of the signal in the second image
 - Reduction of pixel size to reduce peak locking

- **High speed CMOS video camera**
 - Resolution up to 2k.2k at more than 4kHz
 - 8 to 12 bits images
 - Pixels size (10 to 22 \(\mu \text{m} \)) - To be decreased
 - Sensitivity has to be improved
 - Straddling synchronization

- **Increasing of the laser power**
 - 50 to 100 mJ/pulse @5kHz with 10 ns pulse duration would be perfect

- **Unfortunately, PIV is a “marginal” market for camera manufacturers**
 - In the early stage of development, custom cameras were possible
 - Now, we have to wait new models on the market